CCNA Discovery

Введение в маршрутизацию и коммутацию на предприятии

Лабораторная работа 3.2.3. Создание коммутируемой сети с резервными каналами

Наименование коммутатора	Имя коммутатора	Секретный пароль привилегированного доступа	Пароль привилегиров анного доступа, доступа к консоли и каналам vty	VLAN 1 IP-адрес	Маска подсети	Шлюз по умолчанию
Switch 1	SwitchA	class	cisco	192.168.1.2	255.255.255.0	Нет
Switch 2	SwitchB	class	cisco	192.168.1.3	255.255.255.0	Нет

Задачи

- Создать коммутируемую сеть с резервными каналами.
- Определить, какой коммутатор выбран в качестве корневого моста с заводскими настройками по умолчанию.
- Выполнить настройку идентификатора BID на коммутаторе для контроля выбора корневого моста.

Исходные данные/подготовка

В данной лабораторной работе исследуется влияние выбора корневого моста на организацию соединений в коммутируемой сети с резервными каналами. Учащиеся выполнят настройку сети с заводскими настройками по умолчанию, а затем переназначат корневой мост, изменив значение приоритетности моста. Также будет проведено наблюдение за связующим деревом по мере адаптации к изменениям.

Необходимо использовать следующие ресурсы:

- два коммутатора Cisco 2960 или аналога;
- два ПК с ОС Windows, один ПК с программой эмуляции терминала; один в функции узла, другой – сервера;
- один или более консольных кабелей с разъемами RJ45 и DB9 для настройки коммутаторов;

- два прямых кабеля Ethernet;
- два перекрестных кабеля Ethernet;
- доступ к командной строке ПК;
- доступ к сетевой конфигурации TCP/IP ПК.

ПРИМЕЧАНИЕ. Убедитесь, что информация из маршрутизаторов и коммутаторов удалена и в них нет загрузочной конфигурации. Инструкции по удалению начальной конфигурации коммутаторов и маршрутизаторов см. в руководстве по проведению лабораторной работы на веб-сайте академии Cisco в разделе Tools (Инструменты).

ПРИМЕЧАНИЕ. Маршрутизаторы SDM. Если для маршрутизатора SDM удалена начальная конфигурация, при перезагрузке маршрутизатора SDM он перестает отображаться по умолчанию. Необходимо создать основную конфигурацию маршрутизатора с использованием команд IOS. При выполнении шагов данной лабораторной работы используются команды IOS. Использовать SDM не требуется. Если вы хотите использовать SDM, см инструкции в руководстве по проведению лабораторной работы исісо в разделе Tools (Инструменты) или обратитесь к преподавателю, если это необходимо.

Шаг 1. Подсоединение узлов сети

- а. Подсоедините узел 1 к порту Fa0/7 коммутатора 1 с помощью прямого кабеля Ethernet.
- б. Подсоедините узел 2 к порту Fa0/8 коммутатора 2 с помощью прямого кабеля Ethernet.
- в. Подсоедините порт Fa0/1 коммутатора 1 к порту Fa0/1 коммутатора 2 с помощью перекрестного кабеля Ethernet.
- г. Создайте резервный канал между коммутаторами, подсоединив порт Fa0/4 коммутатора 1 к порту Fa0/4 коммутатора 2 с помощью перекрестного кабеля Ethernet.

Какой, как правило, нежелательный тип соединения вы создали, соединив два коммутатора с помощью перекрестного кабеля?

Предположите, каким образом коммутаторы могут противодействовать возникновению этой проблемы?

Шаг 2. Настройка коммутаторов

- а. С узла 1 запустите программу эмуляции терминала и установите сеанс связи с коммутатором 1.
- б. Задайте в конфигурации коммутатора 1 имя узла, пароли, IP-адрес интерфейса VLAN 1 и маску подсети.
- в. Сохраните конфигурацию.
- г. С узла 1 или 2 запустите программу эмуляции терминала и установите сеанс связи с коммутатором 2.
- д. Задайте в конфигурации коммутатора 2 имя узла, пароли, IP-адрес интерфейса VLAN 1 и маску подсети.
- е. Сохраните конфигурацию.

Шаг 3. Настройка узлов

- а. Присвойте каждому узлу IP-адрес в той же сети, что и коммутаторам.
- б. Присвойте каждому узлу ту же маску подсети, что и коммутаторам.

Почему для данной сети не указан шлюз по умолчанию?

Шаг 4. Проверка подключений

а. Для проверки соединения выполните тестирование с использованием эхо-запросов с узла 1 на узел 2.

Эхо-запрос обработан успешно? ____

б. Если эхо-запрос выполнить не удалось, проверьте подсоединения и конфигурацию еще раз. Убедитесь в том, что все кабели подключены правильно и надежно.

Если эхо-запрос выполнить не удалось, какое средство можно использовать для определения в каком месте сети произошел сбой?

Шаг 5. Изучение информации интерфейса VLAN 1

a. В приглашение привилегированного режима EXEC в сеансе эмуляции терминала введите команду show interface vlan1 ?.

SwitchA#show interface vlan1 ?

Перечислите некоторые из доступных параметров.

б. В приглашение привилегированного режима EXEC на коммутаторе SwitchA введите команду show hardware.

SwitchA#show hardware

Какой МАС-адрес у коммутатора? _____

Как еще называется МАС-адрес?

в. В приглашение привилегированного режима EXEC на коммутаторе SwitchB введите команду show hardware.

Какой МАС-адрес у коммутатора? _____

Какой коммутатор должен быть корневым коммутатором связующего дерева для данной сети?

Шаг 6. Изучение таблиц связующего дерева на каждом коммутаторе

- a. В приглашение привилегированного режима EXEC на коммутаторе SwitchA введите команду show spanning-tree.
- б. В приглашение привилегированного режима EXEC на коммутаторе SwitchB введите команду show spanning-tree.
- в. Изучите выходные данные и ответьте на следующие вопросы:

Какой коммутатор является корневым мостом?

Каков приоритет корневого моста?	

Какой идентификатор BID имеет корневой мост?
Какие порты корневого моста являются передающими?
Какие порты корневого моста являются блокирующими?
Какой приоритет имеет некорневой мост?
Какой идентификатор BID имеет некорневой мост?
Какие порты некорневого моста являются передающими?
Какие порты некорневого моста являются блокирующими?
Изучите индикаторы связи на обоих коммутаторах.
Вы можете определить, какой из портов находится в блокирующем состоянии?

Почему состояние индикаторов связи не изменилось?

Шаг 7. Переназначение корневого моста

г.

Что бы вы сделали, если бы захотели, чтобы в данной сети в качестве корневого моста использовался другой коммутатор?

Почему, как вы думаете, возникает необходимость это сделать?

В целях данной лабораторной работы предположим, что коммутатор, который является в данный момент корневым мостом, является нежелательным.

Пример предполагает, что в качестве корневого более предпочтителен коммутатор В. Чтобы "заставить" коммутатор В стать новым корневым мостом, необходимо задать для него в настройках конфигурации новый приоритет.

- а. Перейдите к консоли и войдите в режим конфигурации на коммутаторе В.
- б. Определите параметры, которые могут быть сконфигурированы для протокола связующего дерева STP, выполнив следующую команду:

SwitchB(config)#spanning-tree ?

- в. Перечислите доступные параметры:
- г. Установите приоритет коммутатора в значение 4096.

SwitchB(config)#spanning-tree vlan 1 priority 4096
SwitchB(config)#exit

Шаг 8. Изучение таблицы связующего дерева

- a. В приглашение привилегированного режима EXEC на коммутаторе SwitchA введите команду show spanning-tree.
- б. В приглашение привилегированного режима EXEC на коммутаторе SwitchB введите команду show spanning-tree.
- в. Изучите выходные данные и ответьте на следующие вопросы:

Какой коммутатор является корневым мостом?

Каков приоритет корневого моста? _____

Какой идентификатор BID имеет корневой мост?
Какие порты корневого моста являются передающими?
Какие порты корневого моста являются блокирующими?
Какой приоритет имеет некорневой мост?
Какой идентификатор BID имеет некорневой мост?
Какие порты некорневого моста являются передающими?
Какие порты некорневого моста являются блокирующими?

Шаг 9. Проверка файла текущей конфигурации на корневом мосте

- а. После того, как коммутатор стал корневым мостом, введите в приглашение привилегированного режима EXEC команду show running-config.
- б. Найдите информацию о приоритете этого коммутатора в связующем дереве.
- в. Как можно определить, исходя из данной информации, что коммутатор является корневым мостом?

Шаг 10. Вопросы для обсуждения

Предположите, что вы добавляете новые коммутаторы к сети компании. Почему необходимо тщательно спланировать физическую топологию сети? Почему вы должны быть готовы вносить изменения в заводские настройки по умолчанию?